
Bachelor course 64331010, Caput Operations Research, HC Caput OR 3.5 (3 ects)

Lecture Notes

Algorithmic Game Theory
Department of Econometrics and Operations Research
Faculty of Economics and Business Administration
VU University Amsterdam
March–May 2010

Prof. dr. Guido Schäfer
Email: g.schaefer@cwi.nl

Centrum Wiskunde & Informatica
Algorithms, Combinatorics and Optimization
Science Park 123, 1098 XG Amsterdam, The Netherlands

Vrije Universiteit Amsterdam
Faculty of Economics and Business Administration
Department of Econometrics and Operations Research
De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands

May 2010

g.schaefer@cwi.nl

Contents

1 Selfish Routing 1
1.1 Model . 2
1.2 Nash Flow for Nonatomic Players . 3
1.3 Optimal Flow . 5
1.4 Price of Anarchy . 6
1.5 Upper Bounds on the Price of Anarchy . 6
1.6 Lower Bounds on the Price of Anarchy . 10
1.7 Bicriteria Results . 10
1.8 Algorithmic View on Braess’ Paradox . 11

2 Potential Games 16
2.1 Connection Games . 16
2.2 Potential games . 18

2.2.1 Existence of Nash Equilibria . 20
2.2.2 Price of Stability . 20
2.2.3 Characterization of Exact Potential Games 21
2.2.4 Computing Nash Equilibria . 22

3 Congestion Games 26
3.1 Equivalence to Exact Potential Games . 27
3.2 Price of Anarchy . 28

4 Combinatorial Auctions 30
4.1 Vickrey Auction . 30
4.2 Combinatorial Auctions and the VCG Mechanism 31
4.3 Single-Minded Bidders . 33

iii

1 Selfish Routing

We consider network routing problems in which users choose their routes so as to minimize
their own travel time. Our main focus will be to study the inefficiency of Nash equilibria
and to identify effective means to decrease the inefficiency caused by selfish behavior.

We first consider two examples:

x

1

s t

Figure 1: Pigou instance

Example 1.1 (Pigou’s example). Consider the parallel-arc network in Figure 1. For every
arc a, we have a latency function `a : R+→R+, representing the load-dependent travel time
or latency for traversing this arc. In the above example, we have for the upper arc `a(x) = 1,
i.e., the latency is one independently of the amount of flow on that arc. The lower arc has
latency function `a(x) = x, i.e., the latency grows linearly with the amount of flow on that
arc. Suppose we want to send one unit of flow from s to t and that this one unit of flow
corresponds to infinitely many users that want to travel from s to t.

Every selfish user will reason as follows: The latency of the upper arc is one (inde-
pendently of the flow) while the latency of the lower arc is at most one (and even strictly
less than one if some users are not using this arc). Thus, every user chooses the lower arc.
The resulting flow is a Nash flow. Since every user experiences a latency of one, the total
average latency of this Nash flow is one.

We next compute an optimal flow that minimizes the total average latency of the users.
Assume we send p ∈ [0,1] units of flow along the lower arc and 1− p units of flow along
the upper arc. The total average latency is (1− p) ·1+ p · p = 1− p+ p2. This function is
minimized for p = 1

2 . Thus, the optimal flow sends one-half units of flow along the upper
and one-half units of flow along the lower arc. Its total average latency is 3

4 .

This example shows that selfish user behavior may lead to outcomes that are inefficient:
The resulting Nash flow is suboptimal with a total average latency that is 4

3 times larger
than the total average latency of an optimal flow. This raises the following natural questions:
How large can this inefficiency ratio be in general networks? Does it depend on the topology
of the network?

The next example shows a similar effect, though having a slightly different flavor.

Example 1.2 (Braess’ paradox). Consider the network in Figure 2 (left). Assume that we
want to send one unit of flow from s to t. It is not hard to verify that the Nash flow splits
evenly and sends one-half units of flow along the upper and lower arc, respectively. This
flow is also optimal having a total average latency of 3

2 .

1

1

x

x

1

s t

1

x

x

1

s t0

Figure 2: Braess Paradox

Now, suppose there is a global authority that wants to improve the overall traffic situa-
tion by building new roads. The network in Figure 2 (right) depicts an augmented network
where an additional arc with constant latency zero has been introduced. How do selfish
users react to this change? What happens is that every user chooses the zig-zag path, first
traversing the upper left arc, then the newly introduced zero latency arc and then the lower
right arc. The resulting Nash flow has a total average latency of 2.

The Braess Paradox shows that extending the network infrastructure does not necessar-
ily lead to an improvement with respect to the total average latency if users choose their
routes selfishly. In the above case, the total average latency degrades by a factor of 4

3 . In
general, one may ask the following questions: How large can this degradation be? Can we
develop efficient methods to detect such phenomena?

1.1 Model

We formalize the setting introduced above. An instance of a selfish routing game is given
as follows:

• directed graph G = (V,A) with vertex set V and arc set A;

• set of k commodities [k] := {1, . . . ,k}, specifying for each commodity i ∈ [k] a source
vertex si and a target vertex ti;

• for each commodity i ∈ [k], a demand ri > 0 that represents the amount of flow that
has to be sent from si to ti;

• nondecreasing and continuous latency function `a : R+→ R+ for every arc a ∈ A.

We use (G,r, `) to refer to an instance for short.
Let Pi be the set of all simple paths from si to ti in G and let P := ∪iPi. A flow

is a function f : P → R+. The flow f is feasible (with respect to r) if for all i ∈ [k],
∑P∈Pi fP = ri, i.e., the total flow send from si to ti meets the demand ri. For a given flow f ,
we define the aggregated flow on arc a ∈ A as fa := ∑P∈P:a∈P fP.

The above representation of a flow is also known as the path formulation. The path
formulation is not the most compact way to represent flows (e.g., the number of paths in
Pi is exponential in general), but will sometimes be convenient for our considerations. An
alternative, more compact representation of flows is to use the arc formulation: Here a flow

2

f is represented by k nonnegative vectors f i ∈ RA
+, i ∈ [k]. Each flow f i represents the flow

of commodity i ∈ [k]. The flow f = (f 1, . . . , f k) is feasible if for every vertex v ∈ V , we
have

∀i ∈ [k] : ∑
a∈δ+(v)

f i
a− ∑

a∈δ−(v)
f i
a = γ

i(v), (1)

where δ+(v) and δ−(v) refer to the set of arcs leaving and entering v, respectively. Here
γ i(v) is defined as follows:

γ
i(v) :=


ri if v = si

−ri if v = ti
0 otherwise.

That is, (1) states that for every commodity i ∈ [k], the inflow (with respect to f i) is equal to
the outflow for every vertex v ∈V \{si, ti}, the outflow of v = si is ri and the inflow of v = ti
is −ri. We say that f = (f i)i∈[k] is a multi-commodity flow. The aggregated flow of an arc
a ∈ A is fa := ∑i∈[k] f i

a.
We remark that every path decomposition of a flow defines a unique decomposition into

arc flows. Conversely, an arc decomposition of a flow may be represented by several path
decompositions.

In selfish routing games with nonatomic players it is assumed that the flow f i of com-
modity i ∈ [k] is carried by a large number of players, each controlling an infinitesimal
fraction of the entire demand ri. The total travel time of a path P ∈P with respect to f is
defined as the sum of the latencies of the arcs on that path:

`P(f) := ∑
a∈P

`a(fa).

We assess the overall quality of a given flow f by means of a global cost function C.
Though there are potentially many different cost functions that one may want to consider
(depending on the application), we focus on the total average latency as cost function here.

Definition 1.1. The total cost of a flow f is defined as:

C(f) := ∑
P∈P

`P(f) fP. (2)

Note that the total cost can equivalently be expressed as the sum of the average latencies
on the arcs:

C(f) = ∑
P∈P

`P(f) fP = ∑
P∈P

(
∑
a∈P

`a(fa)
)

fP = ∑
a∈A

(
∑

P∈P:a∈P
fP

)
`a(fa) = ∑

a∈A
`a(fa) fa.

1.2 Nash Flow for Nonatomic Players

The basic viewpoint that we adopt here is that players act selfishly in that they attempt to
minimize their own individual travel time. A standard solution concept to predict outcomes
of selfish behavior is the one of an equilibrium outcome in which no player has an incentive

3

to unilaterally deviate from its current strategy. In the context of nonatomic selfish routing
games, this viewpoint translates to the following definition:

Definition 1.2. A feasible flow f for the instance (G,r, `) is a Nash flow if for every com-
modity i ∈ [k] and two paths P, Q ∈Pi with fP > 0 and for every δ ∈ (0, fP], we have
`P(f)≤ `Q(f̃), where

f̃P :=


fP−δ if P = P

fP +δ if P = Q

fP otherwise.

Intuitively, the above definition states that for every commodity i ∈ [k], shifting δ ∈
(0, fP] units of flow from a flow carrying path P ∈Pi to an arbitrary path Q ∈Pi does not
lead to a smaller latency.

A similar concept was introduced by Wardrop (1952) in his first principle: A flow for
the nonatomic selfish routing game is a Wardrop equilibrium if for every source-target pair
the latencies of the used routes are less than or equal to those of the unused routes.

Definition 1.3. A feasible flow f for the instance (G,r, `) is a Wardrop equilibrium (or
Wardrop flow) if

∀i ∈ [k], ∀P, Q ∈Pi, fP > 0 : `P(f)≤ `Q(f). (3)

For δ → 0 the definition of a Nash flow corresponds to the one of a Wardrop flow.
Subsequently, we use the Wardrop flow definition; we slightly abuse naming here and will
also refer to such flows as Nash flows.

Corollary 1.1. Let f be a Nash flow for (G,r, `) and define for every i ∈ [k], ci(f) :=
minP∈Pi `P(f). Then `P(f) = ci(f) for every P ∈Pi with fP > 0.

Proof. By the definition of ci(f), we have that for every P ∈Pi: `P(f)≥ ci(f). Using (3),
we conclude that for every P ∈Pi with fP > 0: `P(f)≤ ci(f).

Note that the above corollary states that for each commodity all flow carrying paths have
the same latency and all other paths cannot have a smaller latency. The flow carrying paths
are thus shortest paths with respect to the total latency.

We next argue that Nash flows always exist and that their cost is unique. In order to
do so, we use a powerful result from convex optimization. Consider the following program
(CP):

min ∑
a∈A

ha(fa)

s.t. ∑
P∈Pi

fP = ri ∀i ∈ [k]

fa = ∑
P∈P:a∈P

fP ∀a ∈ A

fP ≥ 0 ∀P ∈P.

4

Note that the set of all feasible solutions for (CP) corresponds exactly to the set of all
flows that are feasible for our selfish routing instance (G,r, `). The above program is a
linear program if the functions (ha)a∈A are linear. (CP) is a convex program if the functions
(ha)a∈A are convex. A convex program can be solved efficiently by using, e.g., the ellipsoid
method. The following is a fundamental theorem in convex (or, more generally, non-linear)
optimization:

Theorem 1.1 (Karush–Kuhn–Tucker optimality conditions). Consider the program (CP)
with continuously differentiable and convex functions (ha)a∈A. A feasible flow f is an opti-
mal solution for (CP) if and only if

∀i ∈ [k], ∀P, Q ∈Pi, fP > 0 : h′P(f) := ∑
a∈P

h′a(fa)≤ ∑
a∈Q

h′a(fa) =: h′Q(f), (4)

where h′a(x) refers to the first derivative of ha(x).

Observe that (4) is very similar to the Wardrop equilibrium conditions (3). In fact, these
two conditions coincide if we define for every a ∈ A:

ha(fa) :=
∫ fa

0
`a(x)dx. (5)

Corollary 1.2. Let (G,r, `) be a selfish routing instance with nondecreasing and continu-
ous latency functions (`a)a∈A. A feasible flow f is a Nash flow if and only if it is an optimal
solution to (CP) with functions (ha)a∈A as defined in (5).

Proof. For every arc a ∈ A, the function ha is convex (since `a is nondecreasing) and
continuously differentiable (since `a is continuous). The proof now follows from Theo-
rem 1.1.

Corollary 1.3. Let (G,r, `) be a selfish routing instance with nondecreasing and continu-
ous latency functions (`a)a∈A. Then a Nash flow f always exists. Moreover, its cost C(f) is
unique.

Proof. The set of all feasible flows for (CP) is compact (closed and bounded). Moreover,
the objective function of (CP) with (5) is continuous (since `a is continuous for every a∈A).
Thus, the minimum of (CP) must exist (by the extreme value theorem of Weierstraß). Since
the objective function of (CP) is convex, the optimal value of (CP) is unique. It is not hard
to conclude that the cost C(f) of a Nash flow is unique.

Note that, in particular, the above observations imply that we can compute a Nash flow
for a given nonatomic selfish routing instance (G,r, `) efficiently by solving the convex
program (CP) with (5).

1.3 Optimal Flow

We define an optimal flow as follows:

5

Definition 1.4. A feasible flow f ∗ for the instance (G,r, `) is an optimal flow if C(f ∗) ≤
C(x) for every feasible flow x.

The set of optimal flows corresponds to the set of all optimal solutions to (CP) if we
define for every arc a ∈ A:

ha(fa) := `a(fa) fa. (6)

Since the cost function C is continuous (because `a is continuous for every a ∈ A), we
conclude that an optimal flow always exists (again using the extreme value theorem by
Weierstraß). Moreover, we will assume that ha is convex and continuously differentiable for
each arc a ∈ A; latency functions (`a)a∈A that satisfy these conditions are called standard.
Using Theorem 1.1, we obtain the following characterization of optimal flows:

Corollary 1.4. Let the latency functions (`a)a∈A be standard. A feasible flow f ∗ for the
instance (G,r, `) is an optimal flow if and only if:

∀i ∈ [k], ∀P, Q ∈Pi, f ∗P > 0 : ∑
a∈P

`a(f ∗a)+ `′a(f ∗a) f ∗a ≤ ∑
a∈Q

`a(f ∗a)+ `′a(f ∗a) f ∗a .

That is, an optimal flow is a Nash flow with respect to so-called marginal latency func-
tions (`∗a)a∈A, which are defined as

`∗a(x) := `a(x)+ `′a(x)x.

1.4 Price of Anarchy

We study the inefficiency of Nash flows in comparison to an optimal flow. A common
measure of the inefficiency of equilibrium outcomes is the price of anarchy.

Definition 1.5. Let (G,r, `) be an instance of the selfish routing game and let f and f ∗ be a
Nash flow and an optimal flow, respectively. The price of anarchy ρ(G,r, `) of the instance
(G,r, `) is defined as:

ρ(G,r, `) =
C(f)
C(f ∗)

. (7)

(Note that (7) is well-defined since the cost of Nash flows is unique.) The price of anarchy
of a set of instances I is defined as

ρ(I) = sup
(G,r,`)∈I

ρ(G,r, `).

1.5 Upper Bounds on the Price of Anarchy

Subsequently, we derive upper bounds on the price of anarchy for selfish routing games.
The following variational inequality will turn out to be very useful.

6

Lemma 1.1 (Variational inequality). A feasible flow f for the instance (G,r, `) is a Nash
flow if and only if it satisfies that for every feasible flow x:

∑
a∈A

`a
(

fa
)
(fa− xa)≤ 0. (8)

Proof. Given a flow f satisfying (8), we first show that condition (3) of Definition 1.3 holds.
Let P, Q ∈Pi be two paths for some commodity i ∈ [k] such that δ := fP > 0. Define a
flow x as follows:

xa :=


fa if a ∈ P∩Q or a /∈ P∪Q

fa−δ if a ∈ P

fa +δ if a ∈ Q.

By construction x is feasible. Hence, from (8) we obtain:

∑
a∈A

`a
(

fa
)
(fa− xa) = ∑

a∈P
`a(fa)(fa− (fa−δ))+ ∑

a∈Q
`a(fa)(fa− (fa +δ))≤ 0.

We divide the inequality by δ > 0, which yields the Wardrop conditions (3).
Now assume that f is a Nash flow. By Corollary 1.1, we have for every i ∈ [k] and

P∈Pi with fP > 0: `P(f) = ci(f). Furthermore, for Q∈Pi with fQ = 0, we have `Q(f)≥
ci(f). It follows that for every feasible flow x:

∑
a∈A

`a(fa) fa = ∑
i∈[k]

∑
P∈Pi

ci(f) fP = ∑
i∈[k]

ci(f)

(
∑

P∈Pi

fP

)
= ∑

i∈[k]
ci(f)

(
∑

P∈Pi

xP

)
= ∑

i∈[k]
∑

P∈Pi

ci(f)xP ≤ ∑
i∈[k]

∑
P∈Pi

`P(f)xP = ∑
a∈A

`a(fa)xa.

We derive an upper bound on the price of anarchy for affine linear latency functions
with nonnegative coefficients:

L1 := {g : R+→ R+ : g(x) = q1x+q0 with q0,q1 ∈ R+}.

Theorem 1.2. Let (G,r, `) be an instance of a nonatomic routing game with affine linear
latency functions (`a)a∈A ∈L A

1 . The price of anarchy ρ(G,r, `) is at most 4
3 .

Proof. Let f be a Nash flow and let x be an arbitrary feasible flow for (G,r, `). Using the
variational inequality (8), we obtain

C(f) = ∑
a∈A

`a(fa) fa ≤ ∑
a∈A

`a(fa)xa = ∑
a∈A

`a(fa)xa + `a(xa)xa− `a(xa)xa

= ∑
a∈A

`a(xa)xa +[`a(fa)− `a(xa)]xa︸ ︷︷ ︸
=:Wa(fa,xa)

= ∑
a∈A

`a(xa)xa + ∑
a∈A

Wa(fa,xa).

7

`a(x) = q1x+q0

q0

Wa(fa,xa)

xa fa

`a(xa)

`a(fa)

Figure 3: Illustration of the worst case ratio of Wa(fa,xa) and `a(fa) fa.

We next bound the function Wa(fa,xa) in terms of ω · `a(fa) fa for some 0≤ ω < 1, where

ω := max
fa,xa≥0

(`a(fa)− `a(xa))xa

`a(fa) fa
= max

fa,xa≥0

Wa(fa,xa)

`a(fa) fa
.

Note that for xa ≥ fa we have ω ≤ 0 (because latency functions are non-decreasing). Hence,
we can assume xa ≤ fa. See Figure 3 for a geometric interpretation. Since latency functions
are affine linear, ω is upper bounded by 1

4 . We obtain

C(f)≤C(x)+ ∑
a∈A

1
4
`a(fa) fa =C(x)+

1
4

C(f).

Rearranging terms and letting x be an optimal flow concludes the proof.

We can extend the above proof to more general classes of latency functions. For the
latency function `a of an arc a ∈ A, define

ω(`a) := sup
fa,xa≥0

(`a(fa)− `a(xa))xa

`a(fa) fa
. (9)

We assume by convention 0/0 = 0. See Figure 4 for a graphical illustration of this value.
For a given class L of non-decreasing latency functions, we define

ω(L) := sup
`a∈L

ω(`a).

Theorem 1.3. Let (G,r, `) be an instance of the nonatomic selfish routing game with la-
tency functions (`a)a∈A ∈L A. Let 0≤ω(L)< 1 be defined as above. The price of anarchy
ρ(G,r, `) is at most (1−ω(L))−1.

Proof. Let f be a Nash flow and let x be an arbitrary feasible flow. We have

C(f) = ∑
a∈A

`a(fa) fa ≤ ∑
a∈A

`a(fa)xa = ∑
a∈A

`a(fa)xa + `a(xa)xa− `a(xa)xa

8

0

`a(·)

0

`a(xa)

`a(fa)

xa fa

Figure 4: Illustration of ω(`a).

= ∑
a∈A

`a(xa)xa +[`a(fa)− `a(xa)]xa ≤C(x)+ω(L)C(f).

Here, the first inequality follows from the variational inequality (8). The last inequality
follows from the definition of ω(L). Since ω(L)< 1, the claim follows.

In general, we define Ld as the set of latency functions g : R+→ R+ that satisfy

g(µx)≥ µ
dg(x) ∀µ ∈ [0,1].

Note that Ld contains polynomial latency functions with nonnegative coefficients and de-
gree at most d.

Lemma 1.2. Consider latency functions in Ld . Then

ω(Ld)≤
d

(d +1)(d+1)/d
.

Proof. Recall the definition of ω(`a):

ω(`a) = sup
fa,xa≥0

(
`a(fa)− `a(xa)

)
xa

`a(fa) fa
. (10)

We can assume that xa ≤ fa since otherwise ω(`a)≤ 0. Let µ := xa
fa
∈ [0,1]. Then

ω(`a) = max
µ∈[0,1], fa≥0

((
`a(fa)− `a(µ fa)

)
µ fa

`a(fa) fa

)
≤ max

µ∈[0,1], fa≥0

((
`a(fa)−µd`a(fa)

)
µ fa

`a(fa) fa

)
= max

µ∈[0,1]
(1−µ

d)µ. (11)

Here, the first inequality holds since `a ∈Ld . Since this is a strictly convex program, the
unique global optimum is given by

µ
∗ =

(
1

d +1

) 1
d

.

9

d 1 2 3 . . .

ρ(G,r, `) ≈ 1.333 ≈ 1.626 ≈ 1.896

Table 1: The price of anarchy for polynomial latency functions of degree d.

Replacing µ∗ in (11) yields the claim.

Theorem 1.4. Let (G,r, `) be an instance of a nonatomic routing game with latency func-
tions (`a)a∈A ∈L A

d . The price of anarchy ρ(G,r, `) is at most

ρ(G,r, `)≤
(

1− d
(d +1)(d+1)/d

)−1

.

Proof. The theorem follows immediately from Theorem 1.3 and Lemma 1.2.

The price of anarchy for polynomial latency functions with nonnegative coefficients and
degree d is given in Table 1 for small values of d.

1.6 Lower Bounds on the Price of Anarchy

We can show that the bound that we have derived in the previous section is actually tight.

Theorem 1.5. Consider nonatomic selfish routing games with latency functions in Ld .
There exist instances such that the price of anarchy is at least(

1− d
(d +1)(d+1)/d

)−1

.

Proof. See Exercise 1 of Assignment 1.

1.7 Bicriteria Results

Theorem 1.6. Let (G,r, `) be a nonatomic selfish routing instance. The cost of a Nash
flow for (G,r, `) is at most the cost of an optimal flow for the instance (G,2r, `).

Proof. Let f be a Nash flow for the instance (G,r, `) and let x be an optimal flow for the
instance (G,2r, `). Note that the flow 1

2 x is feasible for (G,r, `). Using the variational
inequality (8), we derive (similar as in the proof of Theorem 1.3)

C(f) = ∑
a∈A

`a(fa) fa ≤ ∑
a∈A

`a(fa) ·
1
2

xa ≤
1
2

(
C(x)+ω(L)C(f)

)
.

Observe that ω(L)≤ 1 which implies that C(f)≤C(x).

10

1.8 Algorithmic View on Braess’ Paradox

Recall the Braess Paradox presented in Example 1.2. If we remove the shortcut edge from
the instance depicted in Figure 5 (right), the total average latency of a Nash flow improves
from 2 to 3

2 . In this section, we address the question whether such subnetworks can be found
efficiently.

1

x

x

1

s t

1

x

x

1

s t0

Figure 5: Braess Paradox

Suppose we are given a single-commodity instance (G,r, `) of the nonatomic selfish
routing game. Let f be a Nash flow for (G,r, `) and define d(G,r, `) := c1(f) as the common
latency of all flow-carrying paths (see Corollary 1.1). We study the following optimization
problem: Given (G,r, `), find a subgraph H ⊆ G that minimizes d(H,r, `). We call this
problem the NETWORK DESIGN problem.

Corollary 1.5. Let (G,r, `) be a single-commodity instance of the nonatomic selfish rout-
ing game with linear latency functions. Then for every subgragph H ⊆ G:

d(G,r, `)≤ 4
3

d(H,r, `).

Proof. Let h and f be the Nash flows for the instances (H,r, `) and (G,r, `), respectively.
By Corollary 1.1, the latency of every flow-carrying path in a Nash flow is equal. Thus, the
costs of the Nash flows f and h, respectively, are rd(G,r, `) and rd(H,r, `). Using that h is
a feasible flow for (G,r, `) and the upper bound of 4/3 on the price of anarchy for linear
latencies, we obtain

C(f) = rd(G,r, `)≤ 4
3

C(h) =
4
3

rd(H,r, `).

We can generalize the above proof to obtain:

Corollary 1.6. Let (G,r, `) be a single-commodity instance of the nonatomic selfish rout-
ing game with polynomial latency functions in Ld . Then for every subgraph H ⊆ G:

d(G,r, `)≤
(

1− d
(d +1)(d+1)/d

)−1

d(H,r, `).

11

We next turn to designing approximation algorithms that compute a “good” subgraph H of
G with a provable approximation guarantee.

Mini-Introduction: Computational Complexity

We briefly review some basics from complexity theory. The exposition here is kept at
a rather high-level; the interested reader is referred to, e.g., the book Computers and In-
tractability: A Guide to the Theory of NP-Completeness by Garey and Johnson for more
details.

Definition 1.6 (Optimization problem). A cost minimization problem P = (I ,S ,c) is
given by:

• a set of instances I of P;

• for every instance I ∈I a set of feasible solutions SI;

• for every feasible solution S ∈SI a real-valued cost c(S).

The goal is to compute for a given instance I ∈ I a solution S ∈SI that minimizes c(S).
We use optI to refer to the cost of an optimal solution for I.

Definition 1.7 (Decision problem). A decision problem P = (I ,S ,c,k) is given by:

• a set of instances I of P;

• for every instance I ∈I a set of feasible solutions SI;

• for every feasible solution S ∈SI a real-valued cost c(S).

The goal is to decide whether for a given instance I ∈ I a solution S ∈ SI exists such
that the cost c(S) of S is at most k. If there exists such a solution, we say that I is a “yes”
instance; otherwise, I is a “no” instance.

Example 1.3 (Traveling salesman problem). We are given an undirected graph G = (V,E)
with edge costs c : E→R+. The traveling salesman problem (TSP) asks for the computation
of a tour that visits every vertex exactly once and has minimum total cost. The decision
problem asks for the computation of a tour of cost at most k.

Several optimization problems (and their respective decision problems) are hard in the
sense that there are no polynomial-time algorithms known that solve the problem exactly.
Here polynomial-time algorithm refers to an algorithm whose running time can be bound
by a polynomial function in the size of the input instance. For example, an algorithm has
polynomial running time if for every input of size n its running time is bound by nk for some
constant k. There are different ways to encode an input instance. Subsequently, we assume
that the input is encoded in binary and the size of the input instance refers to the number of
bits that one needs to represent the instance.

Definition 1.8 (Complexity classes P and NP). A decision problem P = (I ,S ,c,k)
belongs to the complexity class P (which stands for polynomial time) if for every instance

12

I ∈I one can find in polynomial time a feasible solution S ∈SI whose cost is at most k,
or determine that no such solution exists.

A decision problem P =(I ,S ,c,k) belongs to the complexity class NP (which stands
for non-deterministic polynomial time) if for every instance I ∈I one can verify in poly-
nomial time whether a given solution S is feasible, i.e., S ∈SI , and has a cost of at most k,
i.e., c(S)≤ k.

Clearly, P⊆NP. The question whether P 6=NP is still unresolved and one of the biggest
open questions to date.1

Definition 1.9 (Polynomial time reduction). A decision problem P1 = (I1,S1,c1,k1) is
polynomial time reducible to a decision problem P2 = (I2,S2,c2,k2) if every instance
I1 ∈I1 of P1 can in polynomial time be mapped to an instance I2 ∈I2 of P2 such that:
I1 is a “yes” instance of P1 if and only if I2 is a “yes” instance of P2.

Definition 1.10 (NP-completeness). A problem P = (I ,S ,c,k) is NP-complete if

• P belongs to NP;

• every problem in NP is polynomial time reducible to P .

Essentially, problems that are NP-complete are polynomial time equivalent: If we are
able to solve one of these problems in polynomial time then we are able to solve all of them
in polynomial time. Note that in order to show that a problem is NP-complete, it is sufficient
to show that it is in NP and that an NP-complete problem is polynomial time reducible to
this problem.

Example 1.4 (TSP). The problem of deciding whether a traveling salesman tour of cost
at most k exists is NP-complete.

Many fundamental problems are NP-complete and it is therefore unlikely (though not
impossible) that efficient algorithms for solving these problems in polynomial time exist.
One therefore often considers approximation algorithms:

Definition 1.11 (Approximation algorithm). An algorithm ALG for a cost minimization
problem P = (I ,S ,c) is called an α-approximation algorithm for some α ≥ 1 if for
every given input instance I ∈I of P:

1. ALG computes in polynomial time a feasible solution S ∈SI , and

2. the cost of S is at most α times larger than the optimal cost, i.e., c(S)≤ αoptI .

α is also called the approximation factor or approximation guarantee of ALG.

A trivial approximation algorithm (called TRIVIAL subsequently) for the NETWORK

DESIGN problem is to simply return the original graph as a solution. Using the above

1See also The Millennium Prize Problems at http://www.claymath.org/millennium.

13

corollaries, it follows that TRIVIAL has an approximation guarantee of(
1− d

(d +1)(d+1)/d

)−1

for latency functions in Ld .
We will show that the performance guarantee of TRIVIAL is best possible, unless P =

NP.

Theorem 1.7. Assuming P 6= NP, for every ε > 0 there is no (4
3−ε)-approximation algo-

rithm for the NETWORK DESIGN problem.

G

s

t

t1 t2

s1 s2

1 x

x 1

P1 P2

G

s

t

t1 t2

s1 s2
1 x

x 1

P1 P2

Figure 6: (a) “Yes” instance of 2DDP. (b) “No” instance of 2DDP.

Proof. We reduce from the 2-directed vertex-disjoint paths problem (2DDP), which is NP-
complete. An instance of this problem is given by a directed graph G = (V,A) and two
vertex pairs (s1, t1), (s2, t2). The question is whether there exist a path P1 from s1 to t1 and
a path P2 from s2 to t2 in G such that P1 and P2 are vertex disjoint. We will show that
a (4

3 − ε)-approximation algorithm could be used to differentiate between “yes” and “no”
instances of 2DDP in polynomial time.

Suppose we are given an instance I of 2DDP. We construct a graph G′ by adding a
super source s and a super sink t to the network. We connect s to s1 and s2 and t1 and t2 to
t, respectively. The latency functions of the added arcs are given as indicated in Figure 1.8,
where we assume that all latency functions in the original graph G are set to zero. This can
be done in polynomial time.

We will prove the following two statements:

(i) If I is a “yes” instance of 2DDP then d(H,1, `) = 3/2 for some subgraph H ⊆ G′.

(ii) If I is a “no” instance of 2DDP then d(H,1, `)≥ 2 for every subgraph H ⊆ G′.

Suppose for the sake of a contradiction that a (4
3 −ε)-approximation algorithm ALG for

the NETWORK DESIGN problem exists. ALG then computes in polynomial time a sub-
network H ⊆ G′ such that the cost of a Nash flow in H is at most (4

3 − ε)opt, where
opt = minH⊆G′ d(H,r, `). That is, the cost of a Nash flow for the subnetwork H computed

14

by ALG is less than 2 for instances in (i) and it is at least 2 for instances in (ii). Thus, using
ALG we can determine in polynomial time whether I is a “yes” or “no” instance, which is
a contradiction to the assumption that P 6=NP. It remains to show the above two statements.

For (i), we simply delete all arcs in G that are not contained in P1 and P2. Then, splitting
the flow evenly along these paths yields a Nash equilibrium with cost d(H,1, `) = 3/2.

For (ii), we can assume without loss of generality that any subgraph H contains an s, t-
path. If H has an (s,s2, t1, t) path then routing the flow along this path yields a Nash flow
with cost d(H,1, `) = 2. Suppose H does not contain an (s,s2, t1, t) path. Because I is a
“no” instance, we have three possibilities:

1. H contains an (s,s1, t1, t) path but no (s,s2, t2, t) paths (otherwise two such paths must
share a vertex and H would contain an (s,s2, t1, t) path);

2. H contains an (s,s2, t2, t) path but no (s,s1, t1, t) path (otherwise two such paths must
share a vertex and H would contain an (s,s2, t1, t) path);

3. every s, t-path in H is an (s,s1, t2, t) path.

It is not hard to verify that in either case, the cost of a Nash flow is d(H,1, `) = 2.

15

2 Potential Games

In this section, we consider so-called potential games which constitutes a large class of
strategic games having some nice properties. We will address issues like the existence of
pure Nash equilibria, price of stability, price of anarchy and computational aspects.

2.1 Connection Games

As a motivating example, we first consider the following connection game.

Definition 2.1. A connection game Γ = (G = (V,A),(ca)a∈A,N,(si, ti)i∈N) is given by

• a directed graph G = (V,A);

• non-negative arc costs c : A→ R+;

• a set of players N := [n];

• for every player i ∈ N a terminal pair (si, ti) ∈V ×V .

The goal of each player i ∈ N is to connect his terminal vertices si, ti by buying a directed
path Pi from si to ti at smallest possible cost. Let S = (P1, . . . ,Pn) be the paths chosen by all
players. The cost of an arc a ∈ A is shared equally among the players that use this arc. That
is, the total cost that player i experiences under strategy profile S is

ci(S) := ∑
a∈Pi

ca

na(S)
,

where
na(S) = |{i ∈ N : a ∈ Pi}|.

Let A(S) be the set of arcs that are used with respect to S, i.e., A(S) := ∪i∈NPi. The social
cost of a strategy profile S is given by the sum of all arc costs used by the players:

C(S) := ∑
a∈A(S)

ca = ∑
i∈N

ci(S).

Example 2.1. Consider the connection game in Figure 7 (a). There are two Nash equi-
libria: One in which all players choose the left arc and one in which all players choose the
right arc. Certainly, the optimal solution is to assign all players to the left arc. The example
shows that the price of anarchy can be as large as n.

Example 2.2. Consider the connection game in Figure 7 (b). Here the unique Nash equi-
librium is that every player uses his direct arc to the target vertex. The resulting cost is

Hn := 1+
1
2
+

1
3
+ · · ·+ 1

n
,

which is called the n-th harmonic number. (Hn is about log(n) for large enough n.) An
optimal solution allocates all players to the 1+ ε path. The example shows that the cost of
a Nash equilibrium can be a factor Hn away from the optimal cost.

16

t

s

1 n

(a)

s1 s2 s3 . . . sn 1+ ε

t1 = t2 = t3 = · · ·= tn

1 1
2

1
3

1
n

(b)

Figure 7: Examples of connection games showing that (a) Nash equilibria are not unique
and (b) the price of stability is at least Hn.

Consider the following potential function Φ that maps every strategy profile S =

(P1, . . . ,Pn) of a connection game to a real value:

Φ(S) := ∑
a∈A

ca

(
1+

1
2
+ · · ·+ 1

na(S)

)
= ∑

a∈A
caHna(S).

We derive some properties of Φ(S).

Lemma 2.1. Consider an instance Γ = (G,(ca)a∈A,N,(si, ti)i∈N) of the connection game.
We have for every strategy profile S = (P1, . . . ,Pn):

C(S)≤Φ(S)≤ HnC(S).

Proof. Recall that A(S) refers to the set of arcs that are used in S. We first observe that
Hna(S) = 0 for every arc a ∈ A \ A(S) since na(S) = 0. Next observe that for every arc
a ∈ A(S) we have ca ≤ caHna(S) ≤ caHn. Summing over all arcs concludes the proof.

For a given strategy profile S = (P1, . . . ,Pn) we use (S−i,P′i) to refer to the strategy
profile that we obtain from S if player i deviates to path P′i , i.e.,

(S−i,P′i) = (P1, . . . ,Pi−1,P′i ,Pi+1, . . . ,Pn).

The next lemma shows that the potential function reflects exactly the change in cost of
a player if he deviates to an alternative strategy.

Lemma 2.2. Consider an instance Γ = (G,(ca)a∈A,N,(si, ti)i∈N) of the connection game
and let S = (P1, . . . ,Pn) be a strategy profile. Fix a player i ∈ N and let P′i 6= Pi be an
alternative si, ti-path. Consider the strategy profile S′ = (S−i,P′i) that we obtain if player i
deviates to P′i . Then

Φ(S′)−Φ(S) = ci(S′)− ci(S)

17

Proof. Note that for every a /∈Pi∪P′i we have na(S′)= na(S). Moreover, for every a∈Pi∩P′i
we have na(S′) = na(S). We thus have

Φ(S′)−Φ(S) = ∑
a∈A

caHna(S′)−∑
a∈A

caHna(S)

= ∑
a∈P′i \Pi

ca(Hna(S′)−Hna(S))− ∑
a∈Pi\P′i

ca(Hna(S)−Hna(S′))

= ∑
a∈P′i \Pi

ca(Hna(S)+1−Hna(S))− ∑
a∈Pi\P′i

ca(Hna(S)−Hna(S)−1)

= ∑
a∈P′i \Pi

ca

na(S)+1
− ∑

a∈Pi\P′i

ca

na(S)
= ci(S′)− ci(S).

We will see in the next section that the above two lemmas imply the following theorem.

Theorem 2.1. Let Γ = (G,(ca)a∈A,N,(si, ti)i∈N) be an instance of the connection game.
Then Γ has a pure Nash equilibrium and the price of stability is at most Hn, where n is the
number of players.

2.2 Potential games

The above connection game is a special case of the general class of potential games, which
we formalize next.

Definition 2.2. A finite strategic game Γ = (N,(Xi)i∈N ,(ui)i∈N) is given by

• a finite set N = [n] of players;

• for every player i ∈ N, a finite set of strategies Xi;

• for every player i ∈ N, a utility function ui : X→R which maps every strategy profile
x ∈ X := X1×·· ·×Xn to a real-valued utility ui(x).

The goal of every player is to choose a strategy xi ∈ Xi so as to maximize his own utility
ui(x).

A strategy profile x = (x1, . . . ,xn) ∈ X is a pure Nash equilibrium if for every player
i ∈ N and every strategy yi ∈ Xi, we have

ui(x)≥ ui(x−i,yi).

Here x−i denotes the strategy profile (x1, . . . ,xi−1,xi+1, . . . ,xn) excluding player i. Moreover,
(x−i,yi) = (x1, . . . ,xi−1,yi,xi+1, . . . ,xn) refers to the strategy profile that we obtain from x if
player i deviates to strategy yi.

In general, Nash equilibria are not guaranteed to exist in strategic games. Suppose x is
not a Nash equilibrium. Then there is at least one player i ∈ N and a strategy yi ∈ Xi such
that

ui(x)< ui(x−i,yi).

18

Algorithmus 1 IMPROVING MOVES

Input: arbitrary strategy profile x ∈ X
Output: Nash equilibrium x∗

1: x0 := x
2: k := 0
3: while xk is not a Nash equilibrium do
4: determine a player i ∈ N and yi ∈ Xi, such that ui(xk

−i,yi)> ui(xk)
5: xk+1 := (xk

−i,yi)
6: k := k+1
7: end while
8: return x∗ := xk

We call the change from strategy xi to yi of player i an improving move.
A natural approach to determine a Nash equilibrium is as follows: Start with an arbitrary

strategy profile x0 = x. As long as there is an improving move, execute this move. The
algorithm terminates if no improving move can be found. Let the resulting strategy profile
be denoted by x∗. A formal description of the algorithm is given in Algorithm 1. Clearly,
the algorithm computes a pure Nash equilibrium if it terminates.

Definition 2.3. We associate a directed transition graph G(Γ) = (V,A) with a finite strate-
gic game Γ = (N,(Xi)i∈N ,(ui)i∈N) as follows:

• every strategy profile x∈X corresponds to a unique node of the transition graph G(Γ);

• there is a directed edge from strategy x to y = (x−i,yi) in G(Γ) iff the change from xi

to yi corresponds to an improving move of player i ∈ N.

Note that the transition graph is finite since the set of players N and the strategy set Xi of ev-
ery player are finite. Every directed path P = (x0,x1, . . .) in the transition graph corresponds
to a sequence of improving moves. We therefore call P an improvement path. We call x0 the
starting configuration of P. If P is finite its last node is called the terminal configuration.

Definition 2.4. A strategic game Γ= (N,(Xi)i∈N ,(ui)i∈N) has the finite improvement prop-
erty (FIP) if every improvement path in the transition graph G(Γ) is finite.

Consider the execution of IMPROVING MOVES. The algorithm computes an improving
path P = (x0,x1, . . .) with starting configuration x0 and is guaranteed to terminate if Γ has
the FIP. That is, Γ admits a pure Nash equilibrium if it has the FIP. In order to characterize
games that have the FIP, we introduce potential games.

Definition 2.5. A finite strategic game Γ = (N,(Xi)i∈N ,(ui)i∈N) is called exact potential
game if there exists a function (also called potential function) Φ : X→R such that for every
player i ∈ N and for every x−i ∈ X−i and xi,yi ∈ Xi:

ui(x−i,yi)−ui(x−i,xi) = Φ(x−i,xi)−Φ(x−i,yi).

19

Γ is an ordinal potential game if for every player i∈N and for every x−i ∈X−i and xi,yi ∈Xi:

ui(x−i,yi)−ui(x−i,xi)> 0 ⇔ Φ(x−i,xi)−Φ(x−i,yi)> 0.

Γ is a generalized ordinal potential game if for every player i ∈ N and for every x−i ∈ X−i

and xi,yi ∈ Xi:

ui(x−i,yi)−ui(x−i,xi)> 0 ⇒ Φ(x−i,xi)−Φ(x−i,yi)> 0.

2.2.1 Existence of Nash Equilibria

Theorem 2.2. Let Γ = (N,(Xi)i∈N ,(ui)i∈N) be an ordinal potential game. The set of pure
Nash equilibria of Γ coincides with the set of local minima of Φ, i.e., x is a Nash equilibrium
of Γ iff

∀i ∈ N, ∀yi ∈ Xi : Φ(x)≤Φ(x−i,yi).

Proof. The proof follows directly from the definition of ordinal potential games.

Theorem 2.3. Every generalized ordinal potential game Γ has the FIP. In particular, Γ

admits a pure Nash equilibrium.

Proof. Consider an improvement path P = (x0,x1, . . .) in the transition graph G(Γ). Since
Γ is a generalized ordinal potential game, we have

Φ(x0)> Φ(x1)> .. .

Because the transition graph has a finite number of nodes, the path P must be finite. Thus,
Γ has the FIP. The existence follows now directly from the FIP and the IMPROVING MOVES

algorithm.

One can show the following equivalence (we omit the proof here).

Theorem 2.4. Let Γ be a finite strategic game. Γ has the FIP if and only if Γ admits a
generalized ordinal potential function.

2.2.2 Price of Stability

Consider an instance Γ = (N,(Xi)i∈N ,(ui)i∈N) of a potential game and suppose we are given
a social cost function c : X → R that maps every strategy profile x ∈ X to some cost c(x).
We assume that the global objective is to minimize c(x) over all x ∈ X . (The definitions are
similar if we want to maximize c(x).) Let opt(Γ) refer to the minimum cost of a strategy
profile x ∈ X and let NE(Γ) refer to the set of strategy profiles that are Nash equilibria of Γ.

The price of stability is defined as the worst case ratio over all instances of the game of
the cost of a best Nash equilibrium over the optimal cost; more formally,

POS := max
Γ

min
x∈NE(Γ)

c(x)
opt(Γ)

.

20

In contrast, the price of anarchy is defined as the worst case ratio over all instances of
the game of the cost of a worst Nash equilibrium over the optimal cost; more formally,

POA := max
Γ

max
x∈NE(Γ)

c(x)
opt(Γ)

.

Theorem 2.5. Consider a potential game Γ = (N,(Xi)i∈N ,(ui)i∈N) with potential function
Φ. Let c : X → R+ be a social cost function. If Φ satisfies for every x ∈ X:

1
α

c(x)≤Φ(x)≤ βc(x)

for some α,β > 0, then the price of stability is at most αβ .

Proof. Let x be a strategy profile that minimizes Φ. Then x is a Nash equilibrium by Theo-
rem 2.2. Let x∗ be an optimal solution of cost opt(Γ). Note that

Φ(x)≤Φ(x∗)≤ βc(x∗) = βopt(Γ).

Moreover, we have c(x)≤ αΦ(x), which concludes the proof.

2.2.3 Characterization of Exact Potential Games

We show that every exact potential game can be decomposed into a coordination game and
a coordination game.

Definition 2.6. A strategic game Γ = (N,(Xi)i∈N ,(ui)i∈N) is a

• coordination game if there exists a function u : X→R such that ui = u for every i∈N
(all players have the same utility function);

• dummy game if for every i ∈ N, every x−i ∈ X−i and every xi,yi ∈ Xi: ui(x−i,xi) =

ui(x−i,yi) (each player’s utility is independent of his own strategy choice).

Theorem 2.6. Let Γ = (N,(Xi)i∈N ,(ui)i∈N) be a finite strategic game. Γ is an exact poten-
tial game if and only if there exist functions (ci)i∈N and (di)i∈N such that

• ui = ci +di for all i ∈ N;

• (N,(Xi)i∈N ,(ci)i∈N) is a coordination game;

• (N,(Xi)i∈N ,(di)i∈N) is a dummy game.

Proof. Let (ci)i∈N and (di)i∈N satisfy the statement of the theorem. We can then define a
potential function

Φ(x) :=−∑
i∈N

ci(x).

Fix an arbitrary strategy profile x ∈ X and a player i ∈ N. Then for every yi ∈ Xi, we have

ui(x−i,yi)−ui(x) = ci(x−i,yi)− ci(x)+di(x−i,yi)−di(x) = Φ(x)−Φ(x−i,yi),

21

where the last equality holds because (N,(Xi)i∈N ,(di)i∈N) is a dummy game. That is, Γ is
an exact potential game.

Let Φ be an exact potential function for Γ. For every player i ∈ N we have ui(x) =
(ui(x)+Φ(x))−Φ(x). Clearly, (N,(Xi)i∈N ,(−Φ)i∈N) is a coordination game. Fix some
player i ∈ N and x−i ∈ X−i. Since Γ is an exact potential game, we have for every xi,yi ∈ Xi

ui(x−i,yi)−ui(x−i,xi) = Φ(x−i,xi)−Φ(x−i,yi)

⇔ ui(x−i,yi)+Φ(x−i,yi) = ui(x−i,xi)+Φ(x−i,xi).

Thus, (N,(Xi)i∈N ,(ui +Φ)i∈N) is a dummy game.

2.2.4 Computing Nash Equilibria

We next consider the problem of computing a pure Nash equilibrium of an exact potential
game Γ = (N,(Xi)i∈N ,(ui)i∈N). The question of whether or not a Nash equilibrium can
be computed in polynomial time is still open. We will relate the complexity of finding
Nash equilibria for potential games to the complexity of computing local optima for local
search problems. In particular, we will show that the problem of computing Nash equilibria
is PLS-complete, where PLS stands for polynomial local search. PLS-complete problems
constitute a large class of search problems for which (so far) no polynomial time algorithms
are known.

We first define local search problems:

Definition 2.7. A local search problem Π is given by

• a set of instances I ;

• for every instance I ∈I :

– a set F(I) of feasible solutions;

– a cost function c : F(I)→ Z that maps every feasible solution S ∈ F(I) to some
value c(S);

– for every feasible solution S ∈ F(I), a neighborhood N(S, I)⊆ F(I) of S.

The goal is to find a feasible solution S ∈ F(I) that is a local minimum, i.e., c(S)≤ c(S′) for
every S′ ∈ N(S, I).

We associate a transition graph with an instance I ∈ I of a local search problem Π:
Every solution S ∈ F(I) corresponds to a unique node v(S) and there is a directed arc from
v(S1) to v(S2) if and only if S2 ∈ N(S1, I) and c(S2)< c(S1). The sinks of this graph are the
local optima of Π.

The problem of finding a Nash equilibrium of an exact potential game Γ =

(N,(Xi)i∈N ,(ui)i∈N) with potential function Φ can be formulated naturally as a local search
problem: The set of feasible solutions corresponds to the set of possible strategy profiles
X and the objective function is the potential function Φ. The neighborhood of a strategy
profile x ∈ X refers to the set of all possible strategy profiles that are obtainable from x

22

Π1:

Π2:

PLS-
reducible

I ∈ I1

f (I) ∈ I2

f

S1 = g(S2, I) ∈ F1(I)

S2 ∈ F2(f (I))

g (local optima preserving)

polynomial time

algorithm

Figure 8: Illustration of PLS-reduction. A polynomial time algorithm for solving Π2 gives
rise to a polynomial time algorithm for solving Π1.

by single-player deviations. The local minima of the resulting local search problem corre-
sponds exactly to the set of Nash equilibria of Γ (see Theorem 2.2). Note that the transition
graph G(Γ) as defined in Definition 2.3 coincides with the transition graph of the resulting
local search problem.

Definition 2.8. A local search problem Π belongs to the complexity class PLS (polynomial
local search) if the following can be done in polynomial time for every given instance I ∈I :

• compute an initial feasible solution S ∈ F(I);

• compute the objective value c(S) for every solution S ∈ F(I);

• determine for every feasible solution S∈ F(I) whether S is locally optimal or not and,
if not, find a better solution S′ in the neighborhood of S, i.e., some S′ ∈ N(S, I) with
c(S′)< c(S).

It is not hard to see that the problem of computing a Nash equilibrium for potential
games is in PLS.

We next define the concept of PLS-reducibility (see also Figure 8):

Definition 2.9. Let Π1 = (I1,F1,c1,N1) and Π2 = (I2,F2,c2,N2) be two local search
problems in PLS. Π1 is PLS-reducible to Π2 if there are two polynomial time computable
functions f and g such that

• f maps every instance I ∈I1 of Π1 to an instance f (I) ∈I2 of Π2;

• g maps every tuple (S2, I) with S2 ∈ F2(f (I)) to a solution S1 ∈ F1(I) ;

• for all I ∈I1: if S2 is a local optimum of f (I), then g(S2, I) is a local optimum of I.

Definition 2.10. A local search problem Π is PLS-complete if

• Π belongs to the complexity class PLS;

• every problem in PLS is PLS-reducible to Π.

23

The above definitions imply the following: If there is a polynomial time algorithm that
computes a local optimum for a PLS-complete problem Π, then there exists a polynomial
time algorithm for finding a local optimum for every problem in PLS. This holds since every
problem in PLS can be reduced to Π in polynomial time (see Figure 8) and the reduction
preserves local optima.

We will show that computing a Nash equilibrium for exact potential games is PLS-complete.
We do so by a reduction from the weighted satisfiability problem.

Example 2.3. The weighted satisfiability problem is given as follows. We are given a
formula in conjunctive normal form:

f =C1∧C2∧·· ·∧Ck,

where each clause C j, j ∈ [k], is a disjunction of literals. (Example: (y1∨y2)∧(ȳ1∨y3).) We
assume that f consists of n variables y1, . . . ,yn. Every clause C j, j ∈ [k], has a non-negative
weight w j. A feasible solution is an assignment y = (y1, . . . ,yn) ∈ {0,1}n of 0/1-values to
the variables. The total cost c(y) of an assignment y is given by the sum of the weights of the
clauses that are false with respect to y. Define the neighborhood of an assignment y as the
set of assignments that are obtainable from y by changing a single variable yi, i ∈ [n], from
0 to 1 or vice versa. The problem is to determine an assignment y that is a local minimum
with respect to c.

Clearly, the weighted satisfiability problem belongs to PLS. Moreover, the problem is
PLS-complete.

Theorem 2.7. The problem of finding a pure Nash equilibrium for exact potential games
is PLS-complete.

Proof. We observed above that the problem belongs to PLS. We reduce the weighted satis-
fiability problem to the problem of finding a Nash equilibrium in an exact potential game.

Consider an instance of the weighted satisfiability problem

f =C1∧C2∧·· ·∧Ck

with n variables y1, . . . ,yn and weight w j for clause C j, j ∈ [k].
We derive a strategic game Γ = (N,(Xi)i∈N ,(ui)i∈N) from this instance as follows: We

associate a player i ∈ N := [n] with every variable yi of f . Imagine that every clause C j,
j ∈ [k], corresponds to a unique resource j and that each player can allocate certain subsets
of these resources: For player i ∈ N, define

J(i) := { j ∈ [k] : yi occurs in C j} and J̄(i) := { j ∈ [k] : ȳi occurs in C j}

as the resource sets that correspond to clauses that contain the literals yi and ȳi, respectively.
The strategy set Xi of player i ∈ N consists of two strategies: Xi = {J(i), J̄(i)}. Our inter-
pretation will be that yi = 0 if player i ∈ N chooses strategy xi = J(i), while yi = 1 if player
i ∈ N chooses xi = J̄(i).

24

The crucial observation is that a clause C j, j ∈ [k], with l j literals is false iff there are
exactly l j players that have chosen resource j. For a given strategy profile x ∈ X , let n j(x)
refer to the number of players that have chosen resource j ∈ [k], i.e.,

n j(x) := |{i ∈ N : j ∈ xi}|.

Assign every resource j ∈ [k] a cost c j(x) as follows:

c j(x) :=

{
0 if n j(x)< l j

w j otherwise.

Each player’s goal is to minimize the total cost of the resources he allocates. That is, the util-
ity ui(x) of player i ∈ N (which he wants to maximize) is defined as ui(x) :=−∑ j∈xi c j(x).
This reduction can be done in polynomial time. Moreover, every assignment of the weighted
satisfiability problem can be mapped in polynomial time to a corresponding strategy profile
of the resulting strategic game Γ and vice versa.

We show that
Φ(x) := ∑

j∈[k]
c j(x)

is an exact potential function for Γ. To see this note that Φ(x) is equal the total cost c(y) of
the corresponding variable assignment y. Moreover, −ui(x) accounts for the total cost of all
false clauses that contain variable yi (either negated or not). If player i changes his strategy
from xi to x′i we therefore have:

ui(x−i,x′i)−ui(x−i,xi) = Φ(x−i,xi)−Φ(x−i,x′i).

That is, Φ is an exact potential function. By Theorem 2.2, the local minima of Φ correspond
exactly to the set of pure Nash equilibria of Γ. The described reduction preserves local
optima and thus all conditions of Definition 2.9 are met. This concludes the proof.

25

3 Congestion Games

In this section, we consider a general class of resource allocation games, called congestion
games.

Definition 3.1 (Congestion model). A congestion model M = (N,F,(Xi)i∈N ,(c f) f∈F) is
given by

• a set of players N = [n];

• a set of facilities F ;

• for every player i ∈ N, a set Xi ⊆ 2F of subsets of facilities in F ;2

• for every facility f ∈ F , a cost function c f : N→ R.

For every player i ∈ N, Xi is the strategy set from which i can choose. A strategy xi ∈ Xi

is a subset of facilities; we think of xi as the facilities that player i uses. Fix some strategy
profile x = (x1, . . . ,xn)∈ X := X1×·· ·×Xn. The cost incurred for the usage of facility f ∈ F
with respect to x is defined as c f (n f (x)), where

n f (x) := |{i ∈ N : f ∈ xi}|

refers to the total number of players that use f .

Definition 3.2 (Congestion game). The congestion game corresponding to the congestion
model M = (N,F,(Xi)i∈N ,(c f) f∈F) is the strategic game Γ = (N,(Xi)i∈N ,(ci)i∈N), where
every player i ∈ N wants to minimize his cost

ci(x) = ∑
f∈xi

c f (n f (x)).

(Equivalently, every player wants to maximize his utility ui = −ci.) The game is called
symmetric if all players have the same strategy set, i.e., Xi = Q for all i ∈ N and some
Q⊆ 2F .

Example 3.1 (Atomic network congestion game). The atomic network congestion game
can be modeled as a congestion game: We are given a directed graph G = (V,A), a single
commodity (s, t)∈V×V , and a cost function ca : N→R+ for every arc a∈ A. Every player
i ∈ N wants to send one unit of flow from s to t along a single path. The set of facilities is
F := A and the strategy set Xi of every player i ∈ N is simply the set of all directed s, t-paths
in G. (Note that the game is symmetric.) The goal of every player i ∈ N is to choose a path
xi ∈ Xi so as to minimize his cost

ci(x) := ∑
a∈xi

ca(na(x)),

2For a given set S, we use 2S to refer to the power set of S, i.e., the set of all subsets of S.

26

where na(x) refers to the total number of players using arc a. This example corresponds to
a selfish routing game, where every player controls one unit of flow (i.e., we have atomic
players) and has to route his flow unsplittably from s to t.

3.1 Equivalence to Exact Potential Games

Theorem 3.1. Every congestion game Γ= (N,(Xi)i∈N ,(ci)i∈N) is an exact potential game.

Proof. Rosenthal’s potential function Φ : X → R is defined as

Φ(x) := ∑
f∈F

n f (x)

∑
k=1

c f (k). (12)

We prove that Φ is an exact potential function for Γ. To see this, fix some x ∈ X , a player
i ∈ N and some yi ∈ Xi. We have

Φ(x−i,yi) = ∑
f∈F

n f (x)

∑
k=1

c f (k)+ ∑
f∈yi\xi

c f (n f (x)+1)− ∑
f∈xi\yi

c f (n f (x))

= Φ(x)+ ci(x−i,yi)− ci(x).

Thus, Φ is an exact potential function.

By Theorem 2.3 it follows that every congestion game has the FIP and admits a pure
Nash equilibrium. Moreover, by Theorem 2.7, the problem of computing a Nash equilib-
rium in congestion games is PLS-complete.

One can even prove the converse of Theorem 3.1: Every potential game can be trans-
formed into an appropriate congestion game.

Definition 3.3. Let Γ1 = (N,(Xi)i∈N ,(ui)i∈N) and Γ2 = (N,(Yi)i∈N ,(vi)i∈N) be two strate-
gic games with player set N := [n]. Γ1 and Γ2 are isomorphic if for every player i ∈ N there
exists a bijection φi : Xi→ Yi such that for all x ∈ X

ui(x1, . . . ,xn) = vi(φ1(x1), . . . ,φn(xn)).

Lemma 3.1. Every coordination game is isomorphic to a congestion game.

Proof. Let Γ1 = (N,(Xi)i∈N ,(u)i∈N) be a coordination game with n players that want to
maximize a common utility function u. Introduce for every strategy profile x ∈ X a unique
facility f (x) and let F := { f (x) : x ∈ X} be the set of all facilities. We derive a congestion
model M := (N,F,(Yi)i∈N ,(c f) f∈F) from Γ1 as follows: The strategy set Yi of player i ∈ N
is defined as

Yi := {φi(xi) : xi ∈ Xi},

where φi(xi) refers to the set of all facilities f (x) that are associated with strategy profiles x
in which player i chooses strategy xi, i.e., for every xi ∈ Xi

φi(xi) := { f (x−i,xi) : x−i ∈ X−i}.

27

Moreover, define the cost c f (x) of a facility f (x) ∈ F as

c f (x)(k) :=

{
u(x) if k = n

0 otherwise.

That is, facility f (x) has cost u(x) if every player in N uses this facility; otherwise, its cost
is zero. Let Γ2 be the congestion game that we obtain from M .

Fix some strategy profile x = (x1, . . . ,xn) ∈ X of Γ1. We define the bijection φi of every
player i ∈ N as xi 7→ φi(xi). Note that for every strategy profile x ∈ X⋂

i∈N

φi(xi) = f (x).

Therefore there is exactly one facility, namely f (x), that is used by n players in Γ2 with
respect to the strategy profile (φ1(x1), . . . ,φn(xn)). Thus, we have for every player i ∈ N

u(x) = c f (x)(n) = ci(φ1(x1), . . . ,φn(xn)),

which shows that Γ1 and Γ2 are isomorphic.

Lemma 3.2. Every dummy game is isomorphic to a congestion game.

The proof of this lemma is slightly more complicated but similar in flavor to the one
above and omitted here.

Theorem 3.2. Every potential game is isomorphic to a congestion game.

Proof. By Theorem 2.6, we can decompose the potential game into a coordination game
and a dummy game. Apply the above theorems to obtain congestion games Γ1 and Γ2

(with disjoint facility sets) that are isomorphic to the coordination and the dummy game,
respectively. We can then construct an isomorphic congestion game by taking the union of
the facility sets and players’ strategies (strategy-wise) of Γ1 and Γ2.

3.2 Price of Anarchy

Define the social cost of a strategy profile x ∈ X as the total cost of all players, i.e.,

c(x) := ∑
i∈N

ci(x) = ∑
f∈F

n f (x)c f (n f (x)).

As before, we define opt(Γ) := minx∈X c(x) as the optimal cost for Γ.
We derive an upper bound on the price of anarchy for congestion games with respect

to the social cost function c defined above. Here we only consider the case that the cost
of every facility f ∈ F is given as c f (k) = k. The proof extends to arbitrary linear latency
functions.

28

Theorem 3.3. Let M = (N,(Xi)i∈N ,(ci)i∈N) be a congestion model with linear latency
functions c f (k) = k for every f ∈ F and let Γ = (N,(Xi)i∈N ,(ui)i∈N) be the corresponding
congestion game. The price of anarchy is at most 5/2.

We will use the following fact to prove this theorem (whose proof we leave as an exer-
cise):

Fakt 3.1. Let α and β be two non-negative integers. Then

α(β +1)≤ 5
3

α
2 +

1
3

β
2.

Proof of Theorem 3.3. Let x be a Nash equilibrium and x∗ be an optimal strategy profile
minimizing c. Since x is a Nash equilibrium, the cost of every player i∈N does not decrease
if he deviates to his optimal strategy x∗i , i.e.,

ci(x)≤ ci(x−i,x∗i) = ∑
f∈x∗i

c f (n f (x−i,x∗i)) = ∑
f∈x∗i

n f (x−i,x∗i)≤ ∑
f∈x∗i

n f (x)+1,

where the last inequality follows since player i increases the number of players on each
f ∈ x∗i by at most 1 with respect to n f (x). Summing over all players, we obtain

c(x) = ∑
i∈N

ci(x)≤ ∑
i∈N

∑
f∈x∗i

n f (x)+1 = ∑
f∈F

n f (x∗)(n f (x)+1).

Using Fact 3.1, we therefore obtain

c(x)≤ ∑
f∈F

n f (x∗)(n f (x)+1)≤ 5
3 ∑

f∈F
(n f (x∗))2 +

1
3 ∑

f∈F
(n f (x))2 =

5
3

c(x∗)+
1
3

c(x),

where the last equality follows from c f (k) = k for every f ∈ F and the definition of c. We
conclude that c(x)≤ 5

2 c(x∗).

29

4 Combinatorial Auctions

In this section, we present a few examples from the area of mechanism design. The fun-
damental questions that one attempts to address in mechanism design is the following: As-
suming that players act strategically, how should we design the rules of the game such that
the players’ strategic behavior leads to a certain desirable outcome of the game? As a mo-
tivating example, we first consider one of the simplest auctions, known as Vickrey Auction.
We then turn to more general combinatorial auctions.

4.1 Vickrey Auction

Suppose there is an auctioneer who wishes to auction off a single item. An instance of the
single-item auction consists of

• a set of players N = [n] that are interested in obtaining the item;

• every player i ∈ N has a private valuation vi which specifies how much the item is
worth to player i; vi is only known to player i.

• every player i has a bid bi which represents the maximum amount player i declares to
be willing to pay for the item.

The auctioneer receives the bids and needs to determine who receives the item and at what
price. A mechanism can be thought of as a protocol (or algorithm) that the auctioneer runs
in order to make this decision. That is, based on the submitted bids (bi)i∈N , the mechanism
determines

1. a player i∗ in N, called the winner, who receives the item, and

2. a price p that this player has to pay for the item.

We define xi = 1 if player i ∈ N wins the auction and xi = 0 otherwise. We model a player’s
preferences over different outcomes of the game by means of a utility function. Lets assume
that the utility function of player i represents the net gain, defined as ui = xi(vi− p). Note
that the utility is zero if the player does not receive the item. Otherwise, it is his private
valuation minus the price he has to pay. Such utility functions are also called quasi-linear.

There are several natural properties that we want to achieve:

(P1) Strategyproofness: Every player maximizes his utility by bidding truthfully, i.e., bi =

vi.

(P2) Efficiency: Assuming that every player bids truthfully, the mechanism computes an
outcome that maximizes the social welfare, i.e., among all possible outcomes x it
chooses one that maximizes the total valuation ∑i∈N xivi; here, this is equivalent to
require that the mechanism chooses the player with maximum valuation as the winner.

(P3) Polynomial-time computability: The outcome should be computable in polynomial
time.

As it turns out, there is a remarkable mechanism due to Vickrey that satisfies all these
properties; this mechanism is also known as Vickrey auction or second-price auction (see
Algorithm 2).

30

Algorithmus 2 Vickrey Auction
1: Collect the bids (bi)i∈N of all players.
2: Choose a player i∗ ∈ N with highest bid (break ties arbitrarily).
3: Charge i∗ the second highest bid p := maxi 6=i∗ bi.

Lemma 4.1. In a Vickrey Auction, bidding truthfully bi = vi is a dominant strategy for
every player i ∈ N. More formally, for every player i ∈ N and every bidding profile b−i of
the other players, we have

ui(b−i,vi)≥ ui(b−i,bi) ∀bi.

Proof. Consider player i and fix a bidding profile b−i of the other players. Let B=max j 6=i b j

be the highest bid if player i does not participate in the game.
Assume vi ≤ B. Then player i has zero utility if he bids truthfully: Note that player i

loses if vi < B and may win if vi = B (depending on the tie breaking rule); however, in both
cases his utility is zero. His utility remains zero for every bid bi < B or if bi = B and i loses
(due to the tie breaking rule). Otherwise, bi = B and i wins or bi > B. In both cases i wins
and pays B. However, his utility is then ui = vi−B ≤ 0, which is less than or equal to the
utility he obtains if he bids truthfully.

Next assume that vi >B. If player i bids truthfully, he wins and receives a positive utility
ui = vi−B > 0. He is worse off by obtaining a utility of zero if he bids bi < B or if he bids
bi = B and loses (due to the tie breaking rule). Otherwise bi = B and i wins or bi > B. In
both cases, i wins and receives a utility of ui = vi−B > 0, which is the same as if he had
bid bi = vi.

It is easy to see that the Vickrey Auction satisfies (P2) and (P3) as well. More specifi-
cally, it satisfies (P2) since it selects the winner i∗ to be a player whose valuation is maxi-
mum, assuming that every bidder bids truthfully. Moreover, its computation time is linear
in the number of players n. We can thus summarize:

Theorem 4.1. The Vickrey Auction is strategyproof, efficient and runs in polynomial time.

4.2 Combinatorial Auctions and the VCG Mechanism

We now turn to a more general model of auctions. Suppose there is a set M of m≥ 1 items to
be auctioned off to n players. A player may now be interested in a bundle S ⊆M of items.
Every player i ∈ N has a private valuation function vi : 2M → R+, where vi(S) specifies
player i’s value for receiving the items in S ⊆ M. We say vi(S) is the valuation of player
i for bundle S. We assume that vi(/0) = 0. (Although this and the assumption that vi(·) is
non-negative is not essential here).

If every player has a separate value for each item and the value of a subset S⊆M is equal
to the sum of all values of the items in S, then we can simply run a separate Vickrey Auction
for every item. However, this assumption ignores the possibility that differnt bundles may
have different values. More precisely, for a player i, items in S⊆M might be

31

Algorithmus 3 VCG mechanism
1: Collect the bids (bi(S)) for every player i ∈ N and every set S⊆M.
2: Choose an allocation a∗ ∈ O such that

a∗ = argmax
a∈O

∑
i∈N

bi(a).

3: Compute the price pi of player i as

pi := bi(a∗)−
(

max
a∈O

∑
j∈N

b j(a)−max
a∈O

∑
j∈N, j 6=i

b j(a)︸ ︷︷ ︸
i’s contribution to the total social welfare

)
.

4: return a∗

• substitutes: the player’s valuation to obtain the entire bundle S might be less than
or equal to the individual valuations of the items in S, i.e., vi(S) ≤ ∑k∈S vi({k}); for
example, if the items in S are (partially) redundant.

• complements: the player’s valuation to obtain the entire bundle S might be greater
or equal to the individual valuations of the items in S, i.e., vi(S) ≥ ∑k∈S vi({k}); for
example, if the items in S are (partially) dependent.

Here, we consider the most general setting, where we do not make any assumption on the
valuation functions vi of the players.

Let O denote the set of all possible allocations of the items in M to the players. An
allocation a∈O is a function a : M→N∪{⊥} that maps every item to one of the players in
N or to ⊥, which means that the item remains unassigned. Let a−1(i) be the subset of items
that player i ∈ N receives. Every player declares a bid bi(S) for every bundle S ⊆M. (Lets
not care about polynomial-time computability for a moment.) For the sake of conciseness,
we slightly abuse notation: Given an allocation a ∈ O, we write vi(a) and bi(a) to refer to
vi(a−1(i)) and bi(a−1(i)), respectively. The auctioneer needs to decide how to distribute
the items among the players in N and at what price. That is, he determines an allocation
a ∈ O and a pricing vector p = (pi)i∈N , where player i obtains the bundle a−1(i) at a price
of pi. As before, we consider quasi-linear utility functions: The utility of player i, given the
outcome (a, p), is ui = vi(a)− pi.

A mechanism is strategyproof in this setting if a dominant strategy for every player is
to bid bi(S) = vi(S) for every S ⊆ M. Moreover, a mechanism is efficient, if it outputs
an allocation a∗ that maximizes the total social welfare, i.e., a∗ = argmaxa∈O ∑i∈N vi(a),
assuming that every player truthfully reports his valuation.

A powerful mechanism for this quite general class of combinatorial auctions is known
as VCG mechanism due to Vickrey, Clarke and Groves (see Algorithm 3). In particular, as
we will see, the VCG mechanism is strategyproof and efficient.

Theorem 4.2. The VCG mechanism is strategyproof and efficient.

32

Proof. Clearly, if every player bids truthfully the allocation a∗ output by the VCG mecha-
nism maximizes total social welfare. Thus, the VCG mechanism is efficient.

We next prove that the VCG mechanism is strategyproof. Consider an arbitrary player
i ∈ N. Let b = (b−i,bi) be the bid vector of some arbitrary bids and let b̄ = (b−i,vi) be the
same bid vector, except that player i reports his private valuations truthfully. Moreover, let
(a∗, p) and (ā∗, p̄i) be the outcome computed by the VCG mechanism for input b and b̄,
respectively. Observe that we have

b̄i(a) = vi(a) ∀a ∈ O and b̄ j(a) = b j(a) ∀ j 6= i, ∀a ∈ O. (13)

Moreover, ā∗ has been chosen such that

∑
j∈N

b̄ j(ā∗)≥ ∑
j∈N

b̄ j(a) ∀a ∈ O. (14)

Using these two observations, we can infer:

vi(ā∗)− p̄i = vi(ā∗)−
[

b̄i(ā∗)−
(

max
a∈O

∑
j∈N

b̄ j(a)−max
a∈O

∑
j∈N, j 6=i

b̄ j(a)
)]

(13)
= max

a∈O
∑
j∈N

b̄ j(a)−max
a∈O

∑
j∈N, j 6=i

b j(a)

= ∑
j∈N

b̄ j(ā∗)−max
a∈O

∑
j∈N, j 6=i

b j(a)

(14)
≥ ∑

j∈N
b̄ j(a∗)−max

a∈O
∑

j∈N, j 6=i
b j(a)

(13)
= ∑

j∈N, j 6=i
b j(a∗)+ vi(a∗)−max

a∈O
∑

j∈N, j 6=i
b j(a)

= vi(a∗)−
[

bi(a∗)−
(

max
a∈O

∑
j∈N

b j(a)−max
a∈O

∑
j∈N, j 6=i

b j(a)
)]

= vi(a∗)− pi.

Thus, bi = vi is a dominant strategy for player i.

Although the VCG mechanism satisfies strategyproofness and efficiency, it is highly
computationally intractable. In particular, the mechanism relies crucially on the fact that
one can compute an optimal allocation a∗ ∈ O. This problem is typically also called the
allocation problem.

4.3 Single-Minded Bidders

In this section, we consider the special case of a combinatorial auction, where all bidders
are said to be single-minded. More precisely, we say that player i is single-minded if there

33

is some (private) set Σi ⊆M and a (private) value θi ≥ 0 such that for every S⊆M,

vi(S) =

{
θi if S⊇ Σi

0 otherwise.

Intuitively, player i is only interested in getting the items in Σi (or some more) and its
valuation for these items is θi. Note that in the single-minded case every player simply
reports a pair (Si,bi) (not necessarily equal to (Σi,θi)) to the auctioneer. Thus, the input can
be represented compactly and is polynomial in n and m.

The allocation problem for the single-minded case is as follows: Given the bids
{(Si,bi)i∈N}, determine a subset W ⊆ N of winners such that Si∩S j = /0 for every i, j ∈W ,
i 6= j, with maximum social welfare ∑i∈W bi.

Theorem 4.3. The allocation problem for single-minded bidders is NP-hard.

Proof. We give a polynomial-time reduction from the NP-complete problem independent
set. The independent set problem is as follows: Given an undirected graph G = (V,E) and
a non-negative integer k, determine whether there exists an independent set of size at least
k.3

Given an instance (G,k) of the independent set problem, we can construct a single-
minded combinatorial auction as follows: The set of items M corresponds to the edge set E
of G. We associate a player i ∈ N with every vertex ui ∈ V of G. The bundle that player i
desires corresponds to the set of all adjacent edges, i.e., Si := {e = {ui,u j} ∈ E}, and the
value that i assigns to its bundle Si is bi = 1.

Now observe that a set W ⊆ N of winners satisfies Si∩S j = /0 for every i 6= j ∈W iff the
set of vertices corresponding to W constitute an independent set in G. Moreover, the social
welfare obtained for W is exactly the size of the independet set.

Given the above hardness result and insisting on polynomial-time computability, we are
thus forced to consider approximation algorithms. The idea is to relax the efficiency condi-
tion and to ask for an outcome that is (only) approximately efficient. We call a mechanism
α-efficient for some α ≥ 1 if it computes an allocation a ∈ O (assuming truthful bidding
(Si,bi) = (Σi,θi) for all i ∈ N) such that

∑
i∈N

vi(a)≥
1
α

max
a∈O

∑
i∈N

vi(a).

The proof of Theorem 4.3 even shows that the reduction is approximation preserving.
That is, it specifies a bijection that preserves the objective function values of the correspond-
ing solutions (of the allocation problem and the independent set problem). It is known that
the independent set problem is hard even from an approximation point of view:

Fact 4.1. For every fixed ε > 0, there is no O(n1−ε)-approximation algorithm for the

3Recall that an independent set I ⊆ V of G is a subset of the vertices such that no two vertices in I are
connected by an edge.

34

independent set problem, where n denotes the number of vertices in the graph (unless NP⊆
ZPP).

Since the number of edges in a (simple) directed graph is at most O(n2), we obtain the
following corollary:

Corollary 4.1. For every fixed ε > 0, there is no O(m1/2−ε)-efficient mechanism for
single-minded bidders, where m denotes the number of items (unless NP ⊆ ZPP).

The following lemma characterizes properties of strategyproof mechanisms for single-
minded bidders.

Lemma 4.2. A mechanism for single-minded bidders is strategyproof if and only if it sat-
isfies the following two conditions:

1. Monotonicity: A bidder who wins with bid (Si,bi) keeps winning for any b′i > bi and
for any S′i ⊂ Si (for any fixed bids of the other players).

2. Critical value: A bidder who wins pays the minimum value, also called the critical
value, needed for winning, i.e., the payment is the minimum over all values b′i such
that (Si,b′i) still wins.

Proof. We only prove the “if” part of the lemma. We first observe that a truthful bidder
will never receive a negative utility: His utility is zero when he loses. In order to win, his
valuation vi = bi must be at least the critical value, which is exactly his payment.

We next show that a bidder i can never improve his utility by reporting some bid
(Si,bi) 6= (Σi,θi). If (Si,bi) is a losing bid (zero utility), or if Si does not contain Σi (non-
positive utility), then clearly reporting (Σi,θi) can only help.

Assume that (Si,bi) is a winning bid and Si ⊇ Σi. We first show that i is never worse off
by reporting (Σi,bi) instead of (Si,bi). Let pi be the payment for (Si,bi) and let p′i be the
payment for (Σi,bi). Note that (Σi,bi) is a winning bid by monotonicity. For every x < p′i,
bidding (Σi,x) will lose since p′i is a critical value. By monotonicity, (Si,x) will also be a
losing bid for every x < p′i and therefore the critical value pi is at least p′i. It follows that by
bidding (Σi,bi) instead of (Si,bi), player i still wins and his payment does not increase.

Next, we show that player i is not worse off by bidding (Σi,θi) instead of bidding the
winning bid (Σi,bi). First suppose that (Σi,θi) is a winning bid with payment (critical value)
p̄i. As long as bi ≥ p̄i, player i still wins by bidding (Σi,bi) (by monotonicity) and receives
the same payment (by critical value). If bi < p̄i, player i loses and receives zero utility.
In both cases, misreporting does not increase the utility of player i. Finally, suppose that
player i loses by bidding (Σi,θi). Then θi must be smaller than the critical value and thus
the payment for the winning bid (Σi,bi) will be greater than θi. Therefore, the utility that
player i receives by bidding (Σi,bi) is negative.

We next devise a mechanism that is strategyproof and
√

m-approximate efficient. Thus,
from a computational point of view, this is the best we can hope for. The mechanism is the
greedy algorithm described in Algorithm 4.

35

Algorithmus 4 Greedy mechanism for single-minded bidders.
1: Collect the bids {(Si,bi)i∈N} of all players.
2: Reindex the bids such that

b1√
|S1|
≥ b2√

|S2|
≥ · · · ≥ bn√

|Sn|
.

3: W ← /0
4: for i = 1, . . . ,n do
5: if no items in Si have been assigned to players in W , i.e., Si∩

(⋃
j∈W S j

)
= /0 then

6: add i to W : W ←W ∪{i}.
7: end if
8: end for
9: for each i ∈W do

10: define i’s payment as:

pi :=
b j√
|S j|
·
√
|Si|,

where j > i is the smallest index such that Si∩S j 6= /0 and for all k < j, k 6= i, Sk∩S j =
/0; if no such j exists, set pi := 0.

11: end for
12: return (W, p)

Theorem 4.4. The greedy mechanism is strategyproof,
√

m-efficient and runs in
polynomial-time.

Lets verify that the greedy mechanism satisfies the two properties of Lemma 4.2 and
is thus strategyproof. It is easy to see that the greedy mechanism satisfies monotonicity:
Suppose (Si,bi) is a winning bid. If player i increases his bid or submits a subset S′i ⊂ Si, he
can only move further to the front of the greedy ordering. Since Si is disjoint from all sets
S j of previously picked players j ∈W , i remains a winner. Next consider the critical value
property. The critical value of a winning bid (Si,bi) corresponds to the bid b′i for which
(Si,b′i) still wins. Consider Step 10 of Algorithm 4. (Si,b′i) remains a winning bid as long
as b′i≥ pi, since if b′i < pi player j preceds i in the greedy order and thus j wins and prevents
i to enter the winning set W . Thus the payment pi corresponds to the critical value.

36

	Selfish Routing
	Model
	Nash Flow for Nonatomic Players
	Optimal Flow
	Price of Anarchy
	Upper Bounds on the Price of Anarchy
	Lower Bounds on the Price of Anarchy
	Bicriteria Results
	Algorithmic View on Braess' Paradox

	Potential Games
	Connection Games
	Potential games
	Existence of Nash Equilibria
	Price of Stability
	Characterization of Exact Potential Games
	Computing Nash Equilibria

	Congestion Games
	Equivalence to Exact Potential Games
	Price of Anarchy

	Combinatorial Auctions
	Vickrey Auction
	Combinatorial Auctions and the VCG Mechanism
	Single-Minded Bidders

